请选择 进入手机版 | 继续访问电脑版
 找回密码
 立即注册

新浪微博登陆

只需一步, 快速开始

查看: 484|回复: 0

移动Soc革命!麒麟970 NPU最深度解读:终于明白华为苦心

[复制链接]

新浪微博达人勋

41

主题

9950

帖子

1026

积分

管理员

Rank: 9Rank: 9Rank: 9

积分
1026

最佳新人活跃会员热心会员宣传达人灌水之王突出贡献优秀版主荣誉管理论坛元老新浪微博勋章大人

发表于 2017-12-26 11:06:41 | 显示全部楼层 |阅读模式
今日,美国知名科技媒体Android Authority主笔Gary Sims对麒麟970进行了深度解读,讲述了麒麟970的人工智能NPU的工作原理,对芯片设计的深远影响,以及为用户使用场景带来的跨越式体验。
“神经网络(Neural Networks)”和“机器学习(Machine Learning)”是近两年移动处理器领域最流行的两个词。华为麒麟970的NPU(神经网络处理器)、Google Pixel 2内置的IPU(图像处理器),以及苹果A11 Bionic,都是实现上述功能特性的专用硬件解决方案。
既然华为、Google和苹果都在都在探索神经引擎处理器,你可能以为机器学习需要特定的硬件。其实不然,神经网络可以在任何形式的处理器上运行,从微处理器到CPU、GPU甚至是DSP。
所以,问题的根本不在于处理器是否能利用神经神经网络和机器学习,而在于它到底有多快,能提升多少效率。
如果时间倒退回30年前,当年的桌面处理器是没有的FPU(浮点运算单元)芯片的,在486之后,Intel把FPU集成到了CPU内部,浮点运算性能大幅提升。而在很多实例计算中,全都是浮点数运算。这样以来,有FPU和没有FPU,运算效率天差之别。
而如今,移动处理器中的NPU也是类似的情况。你可能觉得我们并不需要NPU,就能使用神经网络,但实时情况是,华为正在用事实案例证明,当遇到实时处理运算的情况,NPU是必须的。
简单来说,“神经网络”可以理解为“机器学习”中“教”一台机器区别分辨不同“事物”的一系列技术中的一种。上述“事物”可以是一张照片、一个单词甚至是一种动物的声音,诸如此类。
“神经网络”由很多“神经元”组成,这些“神经元”可以接收输入信号,然后通过网络再向外传播信号,这取决于输入的强度和自身阈值。
举个简单的例子,神经网络正在监测一组灯其中一个的开关,但在网络中,这些灯的状态只能0或者1来表达,但不同的灯可能会出现一样的开关状态。
那么问题来了,神经网络怎么知道是该输出0还是该输出1呢?没有规则或者程序能告诉神经网络,输出我们想得到的逻辑答案。
唯一的方面就是对神经网络进行训练。大量的“样本”和预期结果一起被注入到神经网络中,各种各样的阈值反复微调,不断产生接近预期的结果。这个阶段可以称为“训练阶段”。
这听起来很简单,但实际上相当复杂,尤其是遇到语言、图像这种复杂样本的时候。一旦训练达成,神经网络会自动学会输出预期结果,即便输入的“样本”之前从来没有见过。
神经网络训练成功后,本质上就成了一种静态神经网络模型,它就能应用在数以百万计的设备上用于推理,在CPU、GPU甚至是DSP上运行。这个阶段可以称为“推理阶段”。
Gary Sims指出,“推理阶段”的难度要低于“训练阶段”,而这正是NPU发挥专长的地方。
所以,华为麒麟970最大的不同是,专门设置了NPU硬件芯片,它在处理静态神经网络模型方面有得天独厚的优势,不仅更快,还更有效率。事实上,NPU甚至能以17-33fps实时处理智能手机摄像头拍摄的“直播”视频。
从架构来看,麒麟970像是一台“发电站”,内置8颗CPU和12颗GPU,另有移动网络连接以及多媒体处理模块,晶体管规模达到了史无前例的55亿颗。据华为透露,NPU大约内含1.5亿晶体管,不到整个芯片的3%。
这对于一款移动处理器来说尤为重要。首先,NPU的加入不会明显增大处理器的尺寸、成本,这就意味着,NPU不仅能放入旗舰手机,一些中端手机也能适用。在未来5年,NPU将对Soc设计产生深远影响。
其次是功耗和效率。NPU并非“电老虎”会牺牲手机的续航,相反它能高效的帮CPU承担大量推理运算的任务,反而能节省不少功耗。
在最后的总结中,Gary Sims表示,如果华为能吸引更多第三方App开发者使用NPU,其前景不可限量。想象一下,当App在使用图像、声音、语音识别的时候,全部都能本地处理,不再需要网络连接或者云服务,App的使用体验将大大提升和加强。
试想,一名游客直接通过相机App就能认出当地地标,App能智能识别你的食物并给出相应的卡路里数值、提醒食物过敏......
你认为,NPU会像当年FPU之于CPU一样,成为移动Soc芯片的标准吗?不妨在评论中发表自己的看法。


本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有帐号?立即注册 新浪微博登陆

x
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册 新浪微博登陆

本版积分规则

快速回复 返回顶部 返回列表